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It is not difficult to devise a paper machine which will play a
not very bad game of chess... Are there imaginable digital
computers which would do well in the imitation game?

Alan Turing, 1950

Turing test 1.0: Can computers imitate any (non-specific) human?
Turing Test 2.0: Can computers imitate a specific human?



LLMs are only behaviour prediction models
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Types of
behaviour
prediction

tasks

WHOSE behaviour is being predicted.




Types of
behaviour
prediction

tasks

UNIVERSAL NORMATIVE behaviour prediction.

Example: MMLU, GSM8K, ...




Types of
behaviour
prediction

tasks

STEREOTYPICAL (group average) behaviour prediction.

Example: Culture specific benchmarks




Types of
behaviour
prediction

tasks

INDIVIDUAL behaviour prediction aka PERSONALIZATION

Example: Recommendation systems,
digital twins




Language
Modeling as
a behaviour

prediction

task

Language vs. Dialect vs. ldiolect




Personalization as a lens to study generalization in LLMs

Example 1: Recommendation systems:
What the user might like

-
-
bl

Example 2:"Culturally Yours:
. What the user might NQT understand

N

Philosophical Repercussionsa& Ope'ni‘Questions
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Culture and LLMs

Adilazuarda et al.(2024) Towards
Measuring and Modeling “Culture”
in LLMs: A Survey. In EMNLP 2024

Number of Papers

70 A

60

g

8

8

20 A

#papers for cultural aspects of LLMs (Quarterly Analysis)

LLMs are biased towards Western

culture and under or mis-
represent non-Western cultures

— | ‘ — . . .
J [\ S & o S Y S s Sy S & J & ¥
g N > N N $ N S $ NG N N NG & N2
° V v v V v v v v v v v v v v

Year and Quarter




Behaviour is a distribution over a (possibly
infinite) set of options

A group of individuals displaying similar
behaviour = “culturally” similar

C t
Cultures are documented or undocumented; ;;’2,?::;;

defined at various scales of granularity

Every individual is at the intersection of
various cultural identities.

lIT Bombay

Cultural knowledge provides a prior to user
modelling.




Entropy (P(b)) > Entropy (P(bl country)) > Entropy (P(bl country, gender))

Indian

USA Male

Female

Universe of

all Users

Mexican | Mexican
Female

Saha, Pandey and Choudhury. PERSONALIZATION as a lens to study generalization in
LLMs. In Findings of the ACL 2025.



Experimental Setup

* Movie (MovieLens) and Song (Last.fm) recommendation

 Predict a ranked list of 10 items that user with the following

characteristics will prefer ...
NULL
Country = “INDIA”
Country = “INDIA”, loves(“3 IDIOTS”)
Country = “INDIA”, Age = 20-30 yrs, loves(“ET”, “ARRIVAL”)

Calculate cross-entropy
between Model and Target

Calculate True or Target Calculate entropy of Model’s
entropy from the dataset prediction

HTarget HModel HcCross




3. Personalization as a lens for generalization

Ideally, HTarget = HCross

Hcross
Hcross

Generalization Zone
for the behavior

Better model

- e mm N - -

N
A\ 4

HTarget

Point of inversion

Saha and Choudhury (2025) User Behavior Prediction as a Generic, Robust, Scalable and
Low-Cost Evaluation Strategy for Estimating Generalization in LLMs. Under review.




Proxies and History
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Culturally Yours

A cross-cultural communication

assistant.

Culturally Yours (CY) is a cultural
reading assistant that

identifies, adapts, and translates
culture-specific items from text to
users from different cultural
backgrounds.

The elaborate description :
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The CY Reading Assistant identifies culturally
unfamiliar concepts and explains them as per
the reader’s cultural background.

Pandey, Budhiraja, Saha, and Choudhury (2025) CULTURALLY YOURS: A Reading

Demonstrations

Assistant for Cross-Cultural Content. In Proceedings of COLING 2025: System



User Study
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Participant Location: India Participant Location: Mexico Participant Location: USA
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Figure 1: Participant location-wise difficulty in understanding book reviews by country of origin of the book.

Saha, Pandey and Choudhury (2025) Reading Between the Lines. In Proceedings of

.t.“‘:;sé NAACL 2025
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Figure 2: Inter Annotator Agreement at Review Level and Span Level across Countries.



Inter-annotator Agreement with Goodreads book reviews
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Models agree more between themselves than humans do.
Models agree far less with humans than humans do.



You are not the average!

 All users belonging to a CULTURE

exhibit some of the prototypical
behaviours of that CULTURE

* No user exhibits all the prototypical
behaviours of the CULTURE

* LLM simulations of CULTURE tend to
exhibit less diversity of behaviour (more

Stereotypical?)

Distillation has bad
repercussions for CULTURE,

as it will further reinforce
stereotypical behaviors.




Philosophical Repercussions & Open Questions
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Personalized
Treatment Sandbox
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A fine
ethical
balance

Simulacra
Customization
Treatment &

Privacy
Manipulation
Deep Fakes
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Open
Questions

Q1: Transferability
To what extent the behaviour can be transferred
between domains?

Q2: Limits of Prediction

Human behaviour is a second order complex system.
Does the point of inversion implies a fundamental
limit rather than just a model’s limitation? How to
know when we hit that limit?
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